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1. Summary 
 

Relatively simple correlation/matched filter techniques were developed to detect and 
identify phase-coded radar signals based on true Barker codes and longer, combined 
Barker codes.  Detection and identification rates were good, though not so good as 
those possible with more sophisticated techniques like neural networks.  However, the 
simplicity and computational efficiency of the new methods make them worthwhile 
for some applications. 
 

2. Description of the problem 
 

The problem is to detect and characterize pulsed phase-coded radar signals in noise.  
Gaussian noise is assumed, although further work would consider non-Gaussian noise 
and interference from DS/SS-based CDMA transmissions.  Partial knowledge of the 
radar signal is assumed, in particular the carrier frequency and the type of pseudo-
random sequence used to determine phase.  Barker codes are investigated first but, as 
the longest known true Barker code is only 13 bits and short codes require high power 
levels for a given energy, longer codes created from true Barker codes are also 
considered.  The extended problem of detecting multi-phase Barker codes, other 
pseudo-random codes like m-sequences and forms of wideband interrupted CW was 
not attempted. 

 



3. Properties of phase-coded radar signals 
 

A medium/long-range surveillance radar typically requires a range resolution ∆R of 
15 m.  This ∆R implies a waveform RF bandwidth B of 10 MHz.  From Gabor’s 
theorem, bit duration is 1/B = 10−7s.  Assuming the 13-bit Barker code, the pulse in 
Figure 1 results. 
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Figure 3.1:  Radar pulse for a 13-bit Barker code 
 
 

Time delay td is related to range-to-target R by the equation 
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c

22c RtRt dd =⇒=  (3.1) 

 
so time-delay resolution ∆td is related to range resolution ∆R by the equation: 
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But ∆td is known to be 1/B, giving range resolution 
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Thus B = 10 MHz gives the desired range resolution of 15 m.  Pulse duration τ results 
from the choice of the 13-bit Barker code. 
 
The pulse-repetition interval T, illustrated in Figure 3.2, is a more fundamental 
variable than τ.  It is determined by the maximum unambiguous range, Ru: 

 

     
c

2 uR
T =  (3.4) 

 
τ should then be chosen to satisfy 3τ ≤T in order to avoid eclipsing.  In practice, for 
short pulses like the 13-bit Barker code, T >> 3τ.  Greater efficiency results (power 
reduced) if τ approaches T/3 (τ = T produces CW), which provides the motivation for 
examining the longer codes in section 6. 
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Figure 3.2:  Train of regularly repeating pulses 
 

The length of the pulse train is t0 = nT, i.e. the train has n pulses.  The variable n is 
determined by the requirement that 2E/N0 at maximum range must be 20 dB, where 
E = Sτn, S being signal power.  This may alternatively be stated in the relation 
between output and input SNRs: 
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N
E τ22

0
, (3.5) 

 
i.e. 2nBτ is the integration improvement factor. 
 
Finally, Ts is the interval between pulse trains, satisfying: 
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b
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Ω
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where Ω is the solid angle of search and Ωb is the solid angle of the radar beam.  In 
practice, the choice of Ts is more arbitrary than for other parameters.  In simulations, 
Ts was initially assumed to be constant.  Later, it was assumed to be uniformly 
distributed between Ts − t0/2 and Ts + t0/2. 
 
The following values were used in initial simulations: 
 

B = 10 MHz,   
B
1 (bit length) = 10−7 s 

τ = 1.3 × 10−6 s (for 13-bit Barker code) 
 
τ = m × 10−7 s for pseudo-random m-bit code 
 

T = 7 × 10−4 s, based on Ru = 100 km, 
c

2 uR
T =  

n = 20    ⇒   t0 = nT = 1.4 × 10−2 s 
 
Ts = 3 s (constant) 
 
Ts = 3 + (rand − 0.5)t0, where rand is the Matlab function returning a 
uniformly distributed value between 0 and 1. 
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4. Barker and other pseudo-random codes for phase coding 
 

4.1 True Barker codes 
 
 The nine known Barker codes are represented in Table 4.1. 
 
    

Length N cn
2 + + 
2 − + 
3 + + − 
4 + + − + 
4 + + + − 
5 + + + − + 
7 + + + − − + − 
11 + + + − − − +− − + − 
13 + + + + + − − + + − + − + 

 
Table 4.1:  Barker codes 

 
Barker codes have autocorrelation functions (ACFs) with equal time sidelobes: they 
are the only codes for which ACF sidelobes at zero Doppler have levels ≤N (code 
length).  As explained in section 2, they are too short for some applications – the 
greatest sidelobe reduction, for N = 13, is −22.3 dB.  However it is possible to 
combine Barker codes to create longer codes with good properties. 
 
4.2 Combined Barker codes 

 
This method involves phase coding with one Barker code within each segment of 
another Barker code.  For example, the Barker code of length 3, B3, may be combined 
with that of length 5, B5, to create a code of length 15 (Figure 4.1): 

 
    B53 = (+ + + − +, + + + − +, − − − + −) (4.1) 
 

Note that Bnm is the Kronecker product Bn⊗Bm , regarding sequences as row vectors. 
 
 
 
 
 
 
 
 
 

Figure 4.1:  Combined Barker Code B53 
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The order in which the two codes are combined is significant, i.e. Bn,m ≠ Bm,n.  [1,2] 
give examples of the different code properties of the alternative orderings.  E.g. B4,13, 
for which each bit of the 13-bit code B13 is coded into four bits, has a zero Doppler 
ACF with four side peaks of amplitude 13 at shifts ±1 and ±3, and 12 peaks of 
amplitude 4.  B13,4 has the same number of side peaks of amplitude >1, but the side 
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peaks of amplitude 13 occur at shifts of ±13 and ±39.  The main peak of the ACF in 
both cases has amplitude 52.  B4,13 is useful if expected interference is well separated 
in range from the target. 
 
Combining pairs of Barker codes simply in this way can give codes up to 
11 × 13 = 143 bits long.  The properties of 3-way combinations, e.g. 3 × 5 × 7, are not 
known.  Note that Bnn is not used because of high partial correlations. 
 
4.3 n-Phase Barker codes 

 
n-phase Barker sequences, e.g. using phase alphabets such as multiples of π/6, are 
defined and their properties explored in [3,4].  They will be investigated if time 
allows. 
 



5. Methods for detection and characterization of Barker sequences 
 

5.1 Correlation/pattern recognition techniques 
 

These newly developed techniques begin with calculating the ACF of a length Tp of 
signal, where Tp > n′T′, the highest reasonable value of the unknown nT, and Tp << Ts, 
i.e. Tp is selected so there is a high probability it will include a single pulse train of n 
pulses of length T.  FFTs are used to estimate the ACF to improve efficiency. 
Figure 5.1 illustrates the ACF for a noiseless pulse train of B3 pulses. 
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Figure 5.2:  Fourier transform of signal with Tp-length window 
 
The estimate T , either from the ACF or FFT method, is used to identify the unknown 
waveform by dividing the interval T

ˆ

a into K segments of length  and averaging (K is 
the largest integer for which ).  Assuming , 

T̂

aTTK ≤ˆ tMT ∆′=ˆ
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k
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The averaging reduces noise and allows easier detection of the single Barker 
waveform in ui with a matched filter or neural network. 
 
5.2 Simulation results for correlation techniques 

 
The performance of a combination of the techniques in 5.1 was assessed in initial 
simulations.  To reduce computational effort, T was taken to be 7 × 10−5 s.  Otherwise, 
the values in section 3 were used.  A two-stage method detected the presence of a 
repeating pulse-waveform and estimated T, the pulse-repetition interval.  Because of 
the high cost of ACF estimation, detection and initial estimation of T were based on 
the signal’s Fourier spectrum.  This allowed a more precise estimate of T, following 
detection and initial T estimation, from a narrow search of ACF values.  The refined T 
estimate was then used to produce an averaged pulse-waveform, i.e. one with greatly 
reduced noise.  The final stage was to identify the waveform by correlation with 
Barker codes – a matched filter approach.  In more detail, the stages were: 
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(1) As described in 5.1, the DFT of a signal containing a repeating waveform 
consists of narrow sinc functions spaced at 1/T Hz intervals, the sinc amplitudes 
depending on the waveform’s Fourier transform.  The FFT Xk of the P-length signal 
(same symbols used as in 5.2) was used to test for repeating sinc functions by finding 
the value i = r which maximizes 

 

i

iikiii
i k

XXXX
Y

++++
=

L32  (5.3) 

 So 
 

ir YYri ≥⇒≠  (5.4) 
 

This Yr was then tested against a threshold to detect the presence of a repeating 
waveform.  If a repeating waveform was detected the following approximate estimate 
of T was calculated: 

 

      
r

tPT ∆
=1̂  (5.5) 

 
The estimate is not exact as, in general, 1/T is not a sampled frequency of the FFT, i.e. 
the sinc functions’ centres are not sampled. 
 
Detection rates for B13 pulse-trains in alternative noise environments are given in 
table 5.2.  False alarm rates, i.e. detection rates when no pulse-train is present, are also 
given. 
 
(2) Given  from the first stage (5.5), a more accurate estimate of T (and one that 
may be exact) may be derived by examining ACF values for shifts close to .  For 
such a corresponding m, a shift index for which , the ACF is 

1̂T

1̂T

1̂Ttm ≅∆
 

      [ ]miim xxC += E , (5.6) 
 

estimated by averaging xixi+m over all possible i (1 ≤ i ≤ P − m).  For m values 
satisfying 
 
     ,1̂ TTtm ∆≤−∆  (5.7) 

 
∆T being determined by trial and error, the following statistic was maximized: 
 

    
m
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++++
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For M ′  corresponding to this maximum, i.e. 
 
     mM DDMm ≥⇒′≠ ′  (5.9) 
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the final estimate for T becomes: 
 
      (5.10) tMT ∆′=ˆ
 
(3)  was then used to produce a waveform with reduced noise by averaging 
signal segments of length T  (5.2).  The waveform was identified by correlating the 
averaged segment with alternative Barker codes.  A match was found if the maximum 
correlation exceeded a pre-determined threshold.  Although only B

T̂
ˆ

13 signals were 
simulated, the averaged segment was also correlated with B11 and false detection rates 
(deciding B11 was present instead of the actual B13) were estimated.  Also estimated 
were failure rates to detect any pulse-train when B13 was present.  The identification 
results may be seen in table 5.3.  The confusion between B13 and B11 may be 
explained by their high cross-correlation: 
 
    
 

 
001012103410373014301210100

)()()11,13( 1113

LL −−−−−−−−−−=

∑ +=
i

j jiBiBCC

      (5.11) 
 
More sophisticated pattern recognition algorithms are being developed to distinguish 
Barker codes.  The cross-correlation properties of Barker codes are also under 
investigation. 

 
 

Noise % Detection % False alarms 
6 dB 
3 dB 
0 dB 

96 
86 
62 

2 
8 
42 

 
Table 5.2:  Detection/false alarm rates for B13

 
 
 

Noise % Identification (B13) % False identification (B11) 
% Failure to 

identify 
6 dB 
3 dB 
0 dB 

100 
98 
90 

4 
12 
26 

0 
0 
6 

 
Table 5.3:  Identification rates for B13 

 
 
Each estimated % in tables 5.2 and 5.3 is based on 50 simulations.  Note that a 0 dB 
noise level corresponds to noise with the same mean amplitude (i.e. 1) as the Barker 
code.  However, the noise persists throughout the signal at this level.  3 dB 
corresponds to a mean noise amplitude of 0.707 (power 0.5) and 6 dB to 0.5 (power 
0.25) 
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Note also that a radar receiver needs an output SNR (i.e. 2E/N0) of 100 (20 dB), and 
 

     ( ) .
0 N

SBn
N
E τ=  (5.12) 

 
So the receiver needs 
 

     ( ) .
100

τBnN
S
=  (5.13) 

 
In the above case, n = 20 and Bτ = 13, so the required S/N = 0.38, i.e. a mean-
amplitude ratio of 0.62. 
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6. Methods for detection and identification of combined Barker sequences 
 

6.1 Correlation/matched-filter techniques 
 
Combined Barker sequences may be expressed as the Kronecker product of a pair of 
Barker sequences.  This is worthwhile as the Matlab routine ‘kron’ may be used to 
produce combined sequences.  The Barker sequences of lengths r and s may be 
represented by the vectors: 

 

     
( ) ( )
( ) ( sjs

rir
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K

K

21

21

B
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==

) (6.1) 

 
A combined Barker sequence Brs is produced by the Kronecker product Br ⊗ Bs , i.e. 
taking Bs = (βj) and replacing each entry βj by the r-vector βj(αi): 
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Correlating the combined Barker sequence Brs with the inner sequence Br produces 
the matched-filter output: 
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Note that ck produces βj values every r–th value of k: 
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For all other ck terms: 
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Thus, correlating every r-th value of (ck) with the outer sequence Bs produces the 
maximum matched-filter output: 
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 (6.7) 

 
The above suggests a 2-dimensional search for the presence of Brs in a sample.  
Successively searching for Br and Bs is more efficient than directly searching for Brs, 
i.e. for the presence of a repeating (γk) in the sample.  Correlating with an r-length 
sequence and an s-length is clearly more efficient than correlating with one of length 
rs.  Furthermore, it is possible to estimate r before going on to estimate s.  Because of 
poor cross-correlation properties of some Barker sequences, initial correlation of the 
sample with an incorrect Br may lead to a weak repeating pattern, increasing the 
likelihood of false identification. 

 
6.1.1. Estimation of Bj components 

 
For a particular Br and sample Y=(yi), the following matched filter results: 
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The first stage in estimating the outer sequence is to correlate alternative Bs with ck 
values at k-intervals of r , producing the  sequence (matched-filter output): s

kcc
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If the correct Bs is used, the maximum value of 1 is produced when that Bs is aligned 
with identical r-spaced c values, as in (6.7), which happens once for each Brs 
waveform (every M-th value of k in (6.9), T = M∆t).  Thus, for noiseless (yi): 
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Tests for Bs exploit the expected pulse train of 1’s in  for the correct s.  The train 
of n pulses at intervals of T (=M∆t), beginning at mT, may be represented: 

s
kcc
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Its Fourier transform is: 
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Its amplitude spectrum is thus: 
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i.e. a series of absolute sinc functions centred on frequencies 0 Hz, 
T
1

±  Hz, 
T
2

±  Hz 

etc. The sinc centred on 0 Hz has zero values at frequencies 
nT
1

± , 
nT
2

±  Hz etc, 

where
TnT
11

<< .  Tests for Bs may thus be based on the amplitude spectrum of  s
kcc

- a phase independent test, i.e. m-independent. 
 
An alternative and simpler test estimates M by taking average of  values at 
p-intervals of k.  Different values for p are tried within the likely range for M, which 
may be derived by examining the amplitude spectrum of  as above, or may be 
known a priori.  The p-interval averages are: 

s
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s
kcc

 

    
p
NLcc

L
ccs p

pL

j

s
jpi

p

p
i ≤∑=

−

=
+ ,1 1

0
 (6.15) 

 
where N is the number of available y samples.  The largest of the p possible values 
(i = 1,2,…, p) is taken for each possible p and the overall maximum over p is 
compared with a threshold to detect s: 

      (6.16) ?][max
1,

thresholdccs p
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pip
≥
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A final alternative is to test the series resulting from taking every r-th value of the ck 
in (6.8) using the techniques of section 5, i.e. test for a true Barker code. 
 
Tests for a single true Barker code or a combined Barker code in the sample may be 
combined.  Using an initial Br matched filter may result in a pulse train of 1’s or a 
recurring pattern associated with a further Bs.  Thus it is possible to decide there is 
just a repeating true Barker code Br present or go on to detect the additional Bs of a 
combined code. 
 
6.1.2. Effects of additive Gaussian noise 

 
Applying the matched filter of (6.8) to a sample consisting of a signal (xi) in Gaussian 
noise (ni): 

 14

,
 
     iii nxy +=  (6.17) 

 
where ni are independent samples from a zero-mean Gaussian distribution of variance 
σ2, produces 
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As αj+1 = ±1, the noise in ck has zero-mean and variance σ2/r.  This effect is repeated 
for  in (6.9), which has a variance of σs

kcc 2/rs.  This clear aids detection, particularly 
for longer sequences, as does the smaller value for cc when βj is not perfectly aligned 
(6.11). 
 
6.2 Simulation results for matched filter/correlation techniques 
 
As an illustration, identification rates are given for B5,3 and B13,7.  ck and  were 
calculated as in (6.8, 6.9) and tests for B

s
kcc

s used (6.15).  M was assumed to be in the 
range 600-800, when the actual value was 700. 

 
 

Noise % Identification % False identification % Failure to 
identify 

6 dB 
3 dB 
0 dB 

84 
81 
70 

13 
14 
23 

11 
16 
27 

 
Table 6.1: Identification rates for B5,3 
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Noise % Identification % False identification % Failure to 
identify 

6 dB 
3 dB 
0 dB 

91 
88 
79 

17 
21 
34 

7 
10 
21 

 
Table 6.2: Identification rates for B13,7

 
Each estimated % in tables 6.1 and 6.2 is based on 100 simulations, with the same 
noise assumptions as described in 5.2. 
 
Clearly, identification is better for the longer B13,7, as expected, but false 
identification is also higher due to higher cross-correlations for the constituent Barker 
codes. 
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7. Alternative methods for Barker sequence detection 
 

7.1 Neural network detection 
 
Neural networks have previously been trained to recognize particular codes [5].  The 
current investigation has focussed on a 3-layer perceptron network with 13 input 
elements trained to detect B13.  The output layer has one neuron, which may be shown 
to give a sufficient statistic.  All neurons in the hidden and output layers use a sigmoid 
function, and neuron thresholds are zero. 
 

 
Sequence Training input 

 

1 
2 
3 
4 
5 

 

. 

. 

. 
13 
14 
15 
. 
. 
. 

24 
25 
26 

 0 0 0 0 0 0 0 0 0 0 0 0 0 
 1 0 0 0 0 0 0 0 0 0 0 0 0 
 −1 1 0 0 0 0 0 0 0 0 0 0 0 
 1 −1 1 0 0 0 0 0 0 0 0 0 0 
 −1 1 −1 1 0 0 0 0 0 0 0 0 0 
 
 
 
 1 1 1 1 −1 −1 1 1 −1 1 −1 1 0 
 1 1 1 1 1 −1 −1 1 1 −1 1 −1 1 B13

 0 1 1 1 1 1 −1 −1 1 1 −1 1 −1 
 
 
 
 0 0 0 0 0 0 0 0 0 0 1 1 1 
 0 0 0 0 0 0 0 0 0 0 0 1 1 
 0 0 0 0 0 0 0 0 0 0 0 0 1 

 
Table 7.1:  Training set, without noise, for B13 

 
Training was carried out with the 26 possible sequences in Table 7.1 with additive 
noise, to attempt to get output 1 for sequence 14 and 0 for all other sequences. 
 
[5] has shown that after training with noiseless codes, the signal-to-sidelobe ratio of 
this kind of network can achieve 42.7 dB for B13 and 49.7 dB for the 63-bit 
m-sequence, much higher than the respective 17 dB and 22 dB for matched filters.  
The neural network also performed much better in the presence of non-Gaussian 
noise.  Current results so far for B13 with additive Gaussian noise have achieved 
around 35 dB, still a much superior detector to the conventional matched filter. 
 
Future work will investigate the effects of the number of neurons in the hidden layer 
and alternative learning algorithms.  Clearly, different networks would be needed for 
different codes, and subsequent analysis required to determine other parameters, 
e.g. T(or n).  An obvious disadvantage of neural networks is their computational 
complexity. 
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7.2 Methods derived from CDMA multiuser detection 
 

The pulse-compression technique in phase-coded radar involves the transmission of a 
long-duration wide-bandwidth signal code, properties shared by CDMS transmissions. 
Thus more severe problems arise when interfering CDMA signals are present. In 
these cases, it may be beneficial to use a modified multiuser detector (MUD), 
designed to reject multiple access interference (MAI) in CDMA, possibly blindly and 
adaptively. MUDs use information about all users’ codes to cancel MAI, i.e. all users’ 
signals except the wanted user’s: in general, the more information used the better, and 
slower, the detection. In this application, all users constitute the MAI and the radar 
signal the desired user. MUDs using subspace methods [6] will be investigated: the 
basis of this approach is that, by performing an eigendecomposition of the 
autocorrelation matrix of signal samples, the signal is separated into radar signal and 
CDMA user subspace and the noise subspace. 

 
MUDs exploiting the cyclostationarity and resulting high degree of spectral 
correlation of signals will also be investigated. Silent periods between pulse trains 
may be exploited to derive the (cyclostationary) CDMA interference model, removing 
the need for training sequences [7]. 

 
7.3 Independent component analysis (ICA) 
 
This is a statistical technique which is suitable for blind estimation and detection 
when signals from multiple sensors are available. ICA finds a linear transformation of 
the signal vector to separate it into its component, statistically independent, parts. 
Phase-coded radar signals, any CDMA users’ signals present, and noise will be 
mutually independent. The following model is assumed for the signal vector y: 
 

     y  = Mx + n (7.1) 
 

where x is a vector containing the radar signal and CDMA users’ signals, M is a 
mixing matrix, and n an additive noise vector. ICA computes a linear transform W 
such that the elements of  
 

     s  = Wy (7.2) 
 

are as statistically independent as possible: these s-elements are estimates of the 
independent source signals, i.e. the radar and CDMA users’ signals. 

 
ICA has been used as a MUD for CDMA with little knowledge of even the wanted 
signal [8], and also for separating monopulse radar signals [9]. 
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8. Conclusions and future work 
 

Only the simple, low-complexity correlation and matched-filter methods of sections 5 
and 6 have been investigated in detail.  They produce good detection and 
identification rates for true Barker codes, less good for combined Barker codes.  
Further investigation into the cross-correlation properties of true Barker codes is 
needed to derive theoretical performance limits.  It seems unlikely that the slightly 
improved performance of more sophisticated methods like neural networks would 
justify the extra complexity.  Neural networks are not real-time methods for this 
application. 
 
The techniques of section 6 may in principle be extended to analyse signals 
employing Barker-like codes constructed from three true Barker codes, Bu⊗Bv⊗Bw.  
E.g B13⊗(B11⊗B7) and (B13⊗B11)⊗B7 are codes of length 1001.  However, the 
properties of such codes are unknown and need investigation. 
 
Finally, alternative noise environments need to be explored, in particular modified 
MAI techniques to cancel interfering signals. 
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10. Glossary 
 

10.1 Abbreviations 
 

ACF  autocorrelation function 
CDMA code division multiple access 
CW  continuous wave 
DFT  discrete Fourier transform 
FFT  fast Fourier transform 
ICA  independent component analysis 
MAI  multiple-access interference 
m-sequence maximal-length sequence 
MUD  multi-user detector 
RF  radio frequency 

 
10.2 Symbols 
 

B  bandwidth 
Bn  Barker code of length n 
Bn,m  combined Barker code from Bn and Bm
c  velocity of light 
Cm  ACF value for shift m 
CCj  Cross-correlation function value for shift j 
E  input energy, i.e. 0tS  ( S  is the mean input signal power) 
m  metres 
n  number of pulses in train 
N  noise input to receiver, i.e. N0B 
N0  input-noise power spectral density (one-sided) 
R  range to target 
∆R  range resolution 
Ru  maximum unambiguous range 
s  seconds 
S  input signal power 
t0  length of pulse train 
td  time delay 
∆td  time-delay resolution 
T  pulse-repetition interval 
Ts  interval between pulse trains 
τ  pulse duration 
Ω  solid angle of search 
Ωb  solid angle of radar beam 
≅  approximately equal to 
*  convolution 
⊗  Kronecker product, e.g. (a1 a2) ⊗ (b1 b2) = (b1a1 b1a2 b2a1 b2a2) 
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